Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast.

Identifieur interne : 000198 ( Main/Exploration ); précédent : 000197; suivant : 000199

The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast.

Auteurs : Sophie Reidman [Israël] ; Adiel Cohen [Israël] ; Martin Kupiec [Israël] ; Ronit Weisman [Israël]

Source :

RBID : pubmed:31641022

Descripteurs français

English descriptors

Abstract

The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast Schizosaccharomyces pombe, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in S. pombe only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated caa1-1, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of caa1+ partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of caa1+ resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in caa1-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in S. pombe.

DOI: 10.1074/jbc.RA119.010101
PubMed: 31641022
PubMed Central: PMC6885631


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast.</title>
<author>
<name sortKey="Reidman, Sophie" sort="Reidman, Sophie" uniqKey="Reidman S" first="Sophie" last="Reidman">Sophie Reidman</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana</wicri:regionArea>
<wicri:noRegion>4353701 Ra'anana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana, Israel ronitwe@openu.ac.il.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana</wicri:regionArea>
<wicri:noRegion>4353701 Ra'anana</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31641022</idno>
<idno type="pmid">31641022</idno>
<idno type="doi">10.1074/jbc.RA119.010101</idno>
<idno type="pmc">PMC6885631</idno>
<idno type="wicri:Area/Main/Corpus">000173</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000173</idno>
<idno type="wicri:Area/Main/Curation">000173</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000173</idno>
<idno type="wicri:Area/Main/Exploration">000173</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast.</title>
<author>
<name sortKey="Reidman, Sophie" sort="Reidman, Sophie" uniqKey="Reidman S" first="Sophie" last="Reidman">Sophie Reidman</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana</wicri:regionArea>
<wicri:noRegion>4353701 Ra'anana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana, Israel ronitwe@openu.ac.il.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana</wicri:regionArea>
<wicri:noRegion>4353701 Ra'anana</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arginine (pharmacology)</term>
<term>Asparagine (pharmacology)</term>
<term>Aspartate Aminotransferases (genetics)</term>
<term>Aspartate Aminotransferases (metabolism)</term>
<term>Aspartic Acid (pharmacology)</term>
<term>Cytosol (enzymology)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Isoenzymes (genetics)</term>
<term>Isoenzymes (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Methionine Sulfoximine (pharmacology)</term>
<term>Mutation (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Schizosaccharomyces (enzymology)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide aspartique (pharmacologie)</term>
<term>Arginine (pharmacologie)</term>
<term>Asparagine (pharmacologie)</term>
<term>Aspartate aminotransferases (génétique)</term>
<term>Aspartate aminotransferases (métabolisme)</term>
<term>Azote (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Cytosol (enzymologie)</term>
<term>Isoenzymes (génétique)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Méthionine sulfoximine (pharmacologie)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Schizosaccharomyces (enzymologie)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aspartate Aminotransferases</term>
<term>Isoenzymes</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aspartate Aminotransferases</term>
<term>Isoenzymes</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Nitrogen</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Arginine</term>
<term>Asparagine</term>
<term>Aspartic Acid</term>
<term>Methionine Sulfoximine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Cytosol</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cytosol</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aspartate aminotransferases</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Isoenzymes</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aspartate aminotransferases</term>
<term>Azote</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Isoenzymes</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide aspartique</term>
<term>Arginine</term>
<term>Asparagine</term>
<term>Méthionine sulfoximine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast
<i>Schizosaccharomyces pombe</i>
, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in
<i>S. pombe</i>
only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated
<i>caa1-1</i>
, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of
<i>caa1</i>
<sup>+</sup>
partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of
<i>caa1</i>
<sup>+</sup>
resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in
<i>caa1</i>
-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in
<i>S. pombe</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31641022</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>294</Volume>
<Issue>48</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>18244-18255</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA119.010101</ELocationID>
<Abstract>
<AbstractText>The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast
<i>Schizosaccharomyces pombe</i>
, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in
<i>S. pombe</i>
only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated
<i>caa1-1</i>
, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of
<i>caa1</i>
<sup>+</sup>
partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of
<i>caa1</i>
<sup>+</sup>
resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in
<i>caa1</i>
-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in
<i>S. pombe</i>
.</AbstractText>
<CopyrightInformation>© 2019 Reidman et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reidman</LastName>
<ForeName>Sophie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Adiel</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kupiec</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weisman</LastName>
<ForeName>Ronit</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Ra'anana, Israel ronitwe@openu.ac.il.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1982-67-8</RegistryNumber>
<NameOfSubstance UI="D008717">Methionine Sulfoximine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>30KYC7MIAI</RegistryNumber>
<NameOfSubstance UI="D001224">Aspartic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7006-34-0</RegistryNumber>
<NameOfSubstance UI="D001216">Asparagine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>94ZLA3W45F</RegistryNumber>
<NameOfSubstance UI="D001120">Arginine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.6.1.1</RegistryNumber>
<NameOfSubstance UI="D001219">Aspartate Aminotransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001120" MajorTopicYN="N">Arginine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001216" MajorTopicYN="N">Asparagine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001219" MajorTopicYN="N">Aspartate Aminotransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001224" MajorTopicYN="N">Aspartic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008717" MajorTopicYN="N">Methionine Sulfoximine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Caa1</Keyword>
<Keyword MajorTopicYN="Y">Psk1</Keyword>
<Keyword MajorTopicYN="Y">S6 kinase</Keyword>
<Keyword MajorTopicYN="Y">Schizosaccharomyces pombe</Keyword>
<Keyword MajorTopicYN="Y">TOR complex (TORC)</Keyword>
<Keyword MajorTopicYN="Y">aspartate amino acid transferase</Keyword>
<Keyword MajorTopicYN="Y">glutamine synthase</Keyword>
<Keyword MajorTopicYN="Y">nitrogen sensing</Keyword>
<Keyword MajorTopicYN="Y">nutrient signaling</Keyword>
<Keyword MajorTopicYN="Y">serine/threonine protein kinase</Keyword>
<Keyword MajorTopicYN="Y">target of rapamycin (TOR)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2020</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31641022</ArticleId>
<ArticleId IdType="pii">RA119.010101</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA119.010101</ArticleId>
<ArticleId IdType="pmc">PMC6885631</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Cells. 2012 Aug;17(8):698-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22762302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Feb 16;25(4):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25639242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 1;123(Pt 5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Aug;26(3):223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 May 26;11(5):e0156239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27227887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2019 Jan;21(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30602761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Dec 29;1171(2):211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1482685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Aug;12(4):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23551936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Dec 04;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29199950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2014 Mar;34(5):794-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24344203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Oct;13(10):6012-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2016 Mar 01;2016(3):pdb.top079764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26933253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Jul 03;7(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28671615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Sep 5;289(36):25010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25063813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Dec 11;11(12):e1005714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26659116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2015 Apr;20(4):292-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25651869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Jun;3(3):610-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Feb;33(Pt 1):257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15667320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 Aug 1;247(3):972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Apr 1;269(13):9632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8144551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Oct;195(2):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23934889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 Mar 4;19(3):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24508508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Feb 8;26(3):319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26776736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(8):2161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Dec 1;125(Pt 23):5840-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22976295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Apr 15;125(Pt 8):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Jul 15;277 ( Pt 2):335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1859361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Apr 6;169(2):361-371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28388417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1995 Apr;40(4):455-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7769621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 18;58(6):977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26028537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Jul 07;6(4):e00959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26152587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Jun 15;127(Pt 12):2639-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24741065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Jun;173(2):569-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16624901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2017 Dec;18(12):2197-2218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29079657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1996 Jul;109 ( Pt 7):1927-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8832415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2016 Jan;26(1):7-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26658722</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Reidman, Sophie" sort="Reidman, Sophie" uniqKey="Reidman S" first="Sophie" last="Reidman">Sophie Reidman</name>
</noRegion>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000198 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000198 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31641022
   |texte=   The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31641022" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020